Twisted string bordism in 7 dimensions with applications to anomaly cancellation

Natalia María Pacheco-Tallaj nataliap@mit.edu based on joint work with I. Basile, C. Krulewski, G. Leone

Midwest Topology Seminar 2025

IFTs and bordisn 00000 $MString \wedge BU(1)^{-r}$

A bordism invariant

Manifold generators 00000

Outline

Anomalies in quantum field theory

- Quantization, symmetries, and anomalies
- Local anomalies and twisted tangential structures
- Anomalies as invertible bulk theories
- Invertible field theories and bordism
 - Functorial field theory
 - IFTs and stable homotopy theory
 - Our mathematical setup
- 3 Twists of BU(1)-string bordism in dimension 7
- ④ An illustrative example: a bordism invariant for n=1
- 5 Manifold generators

IFTs and bordism

MString $\wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Anomalies in quantum field theory

 Anomalies in QFT
 IFTs and bordism
 $MString \land BU(1)^{-nT}$ A bordism invariant
 Manifold generators

 $0 \bullet 000 \circ 00000$ 00000 00000 00000 00000 00000 00000

 Quantization, symmetries, and anomalies
 What is a field theory?
 00000 00000 00000

A field theory is the data of

- A spacetime manifold X which is d dimensional
- A moduli $\mathcal{F}(X)$ of objects over X, called *fields*, e.g.
 - connections on a principal G-bundle $P \rightarrow X$ (gauge fields)
 - sections of a vector bundle $E \rightarrow X$ (matter fields)
 - maps to a target manifold Maps(X, Y) (sigma models)
 - metrics on X (gravity)
- An action functional $S : \mathcal{F}(X) \to \mathbb{C}$

Anomalies in QFT ○●○○○○○○○○○ IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

What is a classical field theory?

A field theory is the data of

- A spacetime manifold X which is d dimensional
- A moduli $\mathcal{F}(X)$ of objects over X, called *fields*, e.g.
 - connections on a principal G-bundle $P \rightarrow X$ (gauge fields)
 - sections of a vector bundle $E \rightarrow X$ (matter fields)
 - maps to a target manifold Maps(X, Y) (sigma models)
 - metrics on X (gravity)
- An action functional $S : \mathcal{F}(X) \to \mathbb{C}$

A classical field theory finds physical fields ψ by solving a principle of stationary action $\delta S/\delta \psi = 0$.

Quantization, symmetries, and anomalies

Anomalies in QFT

What is a quantum field theory?

A field theory is the data of

- A spacetime manifold X which is d dimensional
- A moduli $\mathcal{F}(X)$ of objects over X, called *fields*, e.g.
 - connections on a principal G-bundle $P \rightarrow X$ (gauge fields)
 - sections of a vector bundle $E \rightarrow X$ (matter fields)
 - maps to a target manifold Maps(X, Y) (sigma models)
 - metrics on X (gravity)
- An action functional $S:\mathcal{F}(X)
 ightarrow \mathbb{C}$

A quantum field theory instead defines a probability measure on $\mathcal{F}(X)$ weighted by $\exp(-S)$ (assuming X has Euclidean signature) and computes probability amplitudes and correlation functions of observable physical quantities in this measure.

IFTs and bordism

MString $\land BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

Partition functions and path integrals

- QFT: probability distribution over space of fields weighted by exp(-S)
- Path integral/partition function: integrate over dynamical fields ψ and consider result as a function of the background fields A

$$Z_{\mathbf{X}}[A] = \int_{\psi \in \mathcal{F}^{\mathsf{dyn}}(X)} D\psi e^{-S[\psi,A]} : \mathcal{F}^{\mathsf{bg}}(X) \to \mathbb{C}$$

IFTs and bordism

 $\underset{00000}{\text{MString}} \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

Partition functions and path integrals

- QFT: probability distribution over space of fields weighted by exp(-S)
- Path integral/partition function: integrate over dynamical fields ψ and consider result as a function of the background fields A

$$Z_{\mathbf{X}}[A] = \int_{\psi \in \mathcal{F}^{\mathsf{dyn}}(X)} D\psi e^{-S[\psi, A]} : \mathcal{F}^{\mathsf{bg}}(X) \to \mathbb{C}$$

(schematically $\mathcal{F}^{dyn}(X) \to \mathcal{F}(X) \to \mathcal{F}^{bg}(X)$)

What is a quantum anomaly?

• Physically: "breaking of a classical symmetry by quantum effects"

Anomalies in QFT IFTs and bordism /

MString ∧ *BU*(1)^{−n1} ⊃oooo A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

- Physically: "breaking of a classical symmetry by quantum effects"
- Mathematically: A symmetry or gauge symmetry of classical theory does not leave the path integral invariant.

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

- Physically: "breaking of a classical symmetry by quantum effects"
- Mathematically: A symmetry or gauge symmetry of classical theory does not leave the path integral invariant.
 - Anomalies of global symmetries → study their properties (arXiv:2405.04649)

rdism MString

A bordism invariar

Manifold generators

Quantization, symmetries, and anomalies

Anomalies in QFT

- Physically: "breaking of a classical symmetry by quantum effects"
- Mathematically: A symmetry or gauge symmetry of classical theory does not leave the path integral invariant.
 - Anomalies of global symmetries → study their properties (arXiv:2405.04649)
 - Anomalies of gauge symmetries ~→ inconsistencies, seek anomaly cancellation

and bordism I

MString $\land BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

Anomalies in QFT

- Physically: "breaking of a classical symmetry by quantum effects"
- Mathematically: A symmetry or gauge symmetry of classical theory does not leave the path integral invariant.
 - Anomalies of global symmetries → study their properties (arXiv:2405.04649)
 - Anomalies of gauge symmetries are inconsistencies \rightsquigarrow seek anomaly cancellation

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

What is a quantum anomaly (bad)?

- Physically: "failure of gauge invariance by quantum effects"
- Mathematically: A gauge symmetry of classical theory is not an invariant of the path integral.

Anomalies in QFT IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

- Physically: "failure of gauge invariance by quantum effects"
- Mathematically: A gauge symmetry of classical theory is not an invariant of the path integral.
- Geometrically: Z[A] is not a function over F^{bg}(X), but a section of an *anomaly line bundle* L_{anom}
 - curvature = "local anomaly"
 - holonomy = "global anomaly"

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

What is a quantum anomaly?

"A failure of Z[A] to be defined globally and gauge invariantly."

Example

• X: 4*d*-dimensional spin manifold with a principal *G*-bundle $P \rightarrow X$ and associated bundle $E_P := P \times_G V$

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

What is a quantum anomaly?

"A failure of Z[A] to be defined globally and gauge invariantly."

- X: 4*d*-dimensional spin manifold with a principal *G*-bundle $P \rightarrow X$ and associated bundle $E_P := P \times_G V$
- A := Conn(P) space of connections, F_{fer} := Γ(X, S⁺ ⊗ E_P) space of spinors, so F(X) = (A × F_{fer})/G

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

What is a quantum anomaly?

"A failure of Z[A] to be defined globally and gauge invariantly."

- X: 4*d*-dimensional spin manifold with a principal *G*-bundle $P \rightarrow X$ and associated bundle $E_P := P \times_G V$
- A := Conn(P) space of connections, F_{fer} := Γ(X, S⁺ ⊗ E_P) space of spinors, so F(X) = (A × F_{fer})/G
- Action functional $S[A, \psi] := \int_X \psi^{\dagger} D_A \psi$

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

What is a quantum anomaly?

"A failure of Z[A] to be defined globally and gauge invariantly."

- X: 4d-dimensional spin manifold with a principal G-bundle P → X and associated bundle E_P := P ×_G V
- A := Conn(P) space of connections, F_{fer} := Γ(X, S⁺ ⊗ E_P) space of spinors, so F(X) = (A × F_{fer})/G
- Action functional $S[A, \psi] := \int_X \psi^{\dagger} D_A \psi$
- Integrate out ψ: Z[A] := ∫_{ψ∈Γ(X,S⁺⊗E_A)} e^{-⟨ψ,D_Aψ⟩} is a section of the determinant line bundle L_{anom} over the moduli stack [A/G], associated to the family of chiral Dirac operators {D_A} on X.

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Quantization, symmetries, and anomalies

What is a quantum anomaly?

"A failure of Z[A] to be defined globally and gauge invariantly."

- X: 4*d*-dimensional spin manifold with a principal *G*-bundle $P \rightarrow X$ and associated bundle $E_P := P \times_G V$
- A := Conn(P) space of connections, F_{fer} := Γ(X, S⁺ ⊗ E_P) space of spinors, so F(X) = (A × F_{fer})/G
- Action functional $S[A, \psi] := \int_X \psi^{\dagger} D_A \psi$
- Integrate out ψ: Z[A] := ∫_{ψ∈Γ(X,S⁺⊗E_A)} e^{-⟨ψ,D_Aψ⟩} is a section of the determinant line bundle L_{anom} over the moduli stack [A/G], associated to the family of chiral Dirac operators {D_A} on X.
- By the family index theorem, we have a class $P_{d+2} := [\hat{A}(X)ch(F)]_{(d+2)}$ on $X \times [\mathcal{A}/\mathcal{G}]$ such that $\int_X P_{d+2} \in \Omega^2(\mathcal{A}/\mathcal{G})$ is the curvature form of \mathcal{L}_{anom} .

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Local anomalies are encoded in anomaly polynomials

- Families index theorem ⇒ curvature of L_{anom} is encoded by a degree d + 2 anomaly polynomial
 - an index quantity on X
 - characteristic forms of the gauge fields

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Local anomalies are encoded in anomaly polynomials

- Families index theorem ⇒ curvature of L_{anom} is encoded by a degree d + 2 anomaly polynomial
 - an index quantity on X
 - characteristic forms of the gauge fields
- (Green-Schwarz mechanism) If $P_{d+2} = X_4 \wedge X_{d-2}$, can construct a "counterterm" to cancel the anomaly

• (Green-Schwarz mechanism) If $P_{d+2} = X_4 \wedge X_{d-2}$, can construct a "counterterm" α_{anom} to cancel the anomaly

$$Z_X[A]e^{-2\pi i lpha_{anom}}$$

 (Anomaly inflow) This phase comes from the partition function of a field theory in dimension d + 1: there is some M with ∂M = X and such that

$$Z_X[A]e^{-2\pi i(\operatorname{Idx}(M)+\int_M H \wedge X_8)}$$
 is gauge invariant

only well defined if X_4 is cohomologically trivial on M.

• We call this d + 1-dimensional theory the anomaly theory of Z

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

• We consider 6d $\mathcal{N}=(1,0)$ supergravity theories with type A-D-E or abelian gauge groups

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

• We consider 6d $\mathcal{N} = (1,0)$ supergravity theories with U(1)gauge group, meaning our 6-dimensional manifolds X are equipped with $f : X \to BU(1)$ inducing a complex line bundle $\mathcal{L} := f^*(\mathcal{O}(1)).$

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

- We consider 6d $\mathcal{N} = (1,0)$ supergravity theories with U(1)gauge group, meaning our 6-dimensional manifolds X are equipped with $f : X \to BU(1)$ inducing a complex line bundle $\mathcal{L} := f^*(\mathcal{O}(1)).$
- Anomaly polynomial is

$$(\frac{1}{2}p_1(X)-nc_1(\mathcal{L})^2)c_1(\mathcal{L})^2$$

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

- We consider 6d $\mathcal{N} = (1,0)$ supergravity theories with U(1)gauge group, meaning our 6-dimensional manifolds X are equipped with $f : X \to BU(1)$ inducing a complex line bundle $\mathcal{L} := f^*(\mathcal{O}(1)).$
- Anomaly polynomial is

$$(\frac{1}{2}p_1(X) - nc_1(\mathcal{L})^2)c_1(\mathcal{L})^2$$

• Upshot: all the information of the anomalies is encoded in a 7d anomaly theory defined on 7-manifolds with $\frac{1}{2}p_1(TM) = nc_1(\mathcal{L})^2$

String structures

7-manifolds with $\frac{1}{2}p_1(TM) = nc_1(\mathcal{L})^2$

Definition (String structure)

Let *M* be a spin manifold, then $p_1(M)$ is even. A string structure on *M* is a trivialization of $\frac{1}{2}p_1(M)$.

$$\begin{array}{c}
 BString \\
 \sqrt{7} \\
 M \xrightarrow{7} BSpin \xrightarrow{\frac{1}{2}p_1} K(\mathbb{Z}, 4)
\end{array}$$

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Twisted string structures

7-manifolds with $\frac{1}{2}p_1(TM) = nc_1(\mathcal{L})^2$

Definition (String structure)

Let *M* be a spin manifold, then $p_1(M)$ is even. A string structure on *M* is a trivialization of $\frac{1}{2}p_1(M)$.

Definition $(nc_1^2$ -twisted string structure)

Let M be a spin manifold equipped with a map $f: M \to BU(1)$. An nc_1^2 -twisted string structure is a trivialization of $\frac{1}{2}p_1(M) - nc_1(\mathcal{L})^2$.

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} & BU(1) \\ TM & & & & \downarrow nc_1(\mathcal{O}(1)) \\ BSpin & \stackrel{\frac{1}{2}p_1}{\longrightarrow} & K(\mathbb{Z}, 4) \end{array}$$

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Twisted string structures

7-manifolds with
$$rac{1}{2} p_1(TM) = nc_1(\mathcal{L})^2$$

Definition $(nc_1^2$ -twisted string structure)

Let M be a spin manifold equipped with a map $f: M \to BU(1)$. An nc_1^2 -twisted string structure is a trivialization of $\frac{1}{2}p_1(M) - nc_1(\mathcal{L})^2$.

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Local anomalies and twisted tangential structures

Twisted string structures

7-manifolds with
$$rac{1}{2} p_1(\mathcal{T}M) = nc_1(\mathcal{L})^2$$

Definition $(nc_1^2$ -twisted string structure)

Let M be a spin manifold equipped with a map $f: M \to BU(1)$. An nc_1^2 -twisted string structure is a trivialization of $\frac{1}{2}\rho_1(M) - nc_1(\mathcal{L})^2$.

Remark

Consider the (virtual) bundle $T = O(1) + O(-1) - 2_{\mathbb{C}}$ on BU(1). We also call this a (BU(1), -nT)-twisted string structure, because given a manifold M with a map $f : M \to BU(1)$, it is the data of a string structure on $TM + f^*(-nT)$.^a

 $a_{\frac{1}{2}}^{2}p_{1}(TM - f^{*}nT) = \frac{1}{2}p_{1}(TM) - nc_{1}(f^{*}\mathcal{O}(1))^{2} = 0$

QFT: Try to integrate Dψe^{-S[A,ψ]} over dynamical fields, result is section of L_{anom} → F^{bg}(X)

- QFT: Try to integrate Dψe^{-S[A,ψ]} over dynamical fields, result is section of L_{anom} → F^{bg}(X)
- Local anomaly (curvature of \mathcal{L}_{anom}) encoded in $P_{d+2} = X_4 \wedge X_{d-4}$

- QFT: Try to integrate Dψe^{-S[A,ψ]} over dynamical fields, result is section of L_{anom} → F^{bg}(X)
- Local anomaly (curvature of \mathcal{L}_{anom}) encoded in $P_{d+2} = X_4 \wedge X_{d-4}$
- $Z_X[A]$ not gauge invariant but $Z_X[A]e^{-2\pi i\alpha_M[\widetilde{A}]}$ is, with $\partial M = X$

- QFT: Try to integrate Dψe^{-S[A,ψ]} over dynamical fields, result is section of L_{anom} → F^{bg}(X)
- Local anomaly (curvature of \mathcal{L}_{anom}) encoded in $P_{d+2} = X_4 \wedge X_{d-4}$
- $Z_X[A]$ not gauge invariant but $Z_X[A]e^{-2\pi i\alpha_M[\widetilde{A}]}$ is, with $\partial M = X$
- α_M is a well-defined field theory in d + 1 dimensions if M has X_4 twisted tangential structure

- QFT: Try to integrate Dψe^{-S[A,ψ]} over dynamical fields, result is section of L_{anom} → F^{bg}(X)
- Local anomaly (curvature of \mathcal{L}_{anom}) encoded in $P_{d+2} = X_4 \wedge X_{d-4}$
- $Z_X[A]$ not gauge invariant but $Z_X[A]e^{-2\pi i\alpha_M[\widetilde{A}]}$ is, with $\partial M = X$
- α_M is a well-defined field theory in d+1 dimensions if M has X_4 twisted tangential structure
- We call it the *anomaly theory*, and it is an invertible topological field theory defined on X₄ manifolds

- QFT: Try to integrate Dψe^{-S[A,ψ]} over dynamical fields, result is section of L_{anom} → F^{bg}(X)
- Local anomaly (curvature of \mathcal{L}_{anom}) encoded in $P_{d+2} = (\frac{1}{2}p_1(X) - nc_1(\mathcal{L})^2)c_1(\mathcal{L})^2$
- $Z_X[A]$ not gauge invariant but $Z_X[A]e^{-2\pi i\alpha_M[\widetilde{A}]}$ is, with $\partial M = X$
- α_M is a well-defined field theory in d + 1 dimensions if M is nc_1^2 -twisted string
- We call it the *anomaly theory*, and it is an invertible topological field theory defined on *nc*₁²-twisted string manifolds

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Invertible field theories and bordism

IFTs and bordism

MString $\land BU(1)^{-n}$

A bordism invariant

Manifold generators

Functorial field theory

The functorial formalism and its interpretation

The data of a field theory in d + 1 dimensions can often be organized mathematically as follows:

Definition (Functorial field theory)

A d + 1-dimensional functorial field theory (on nc_1^2 -twisted String manifolds) is a symmetric monoidal functor

$$Z:(\mathsf{Bord}^{\mathit{nc}_1^2\operatorname{-String}}_{\langle d,d+1
angle},\sqcup) o (s\mathsf{Vect}_{\mathbb{C}},\otimes)$$

IFTs and bordism

MString $\land BU(1)^{-n}$

A bordism invariant

Manifold generators

Functorial field theory

The functorial formalism and its interpretation

Definition (Functorial field theory)

A d + 1-dimensional functorial field theory (on nc_1^2 -twisted String manifolds) is a symmetric monoidal functor

$$Z: (\mathsf{Bord}^{\mathit{nc}_1^2\operatorname{-String}}_{\langle d, d+1
angle}, \sqcup) o (s\mathsf{Vect}_{\mathbb{C}}, \otimes)$$

- $Z(X^d)$ is interpreted as a state space of the theory
- For a closed d + 1 manifold M, interpreted as a bordism
 Ø → Ø, the morphism Z(M) : C → C in sVect_C is determined by a choice of complex number η ∈ C interpreted as the value of the partition function on M

There is a tensor product structure on the set of all functorial field theories given by point-wise tensor product in $(s\text{Vect}_{\mathbb{C}}, \otimes)$:

$$(Z_1\otimes Z_2)(X^d)=Z_1(X)\otimes Z_2(X)$$

There is a tensor product structure on the set of all functorial field theories given by point-wise tensor product in $(s\text{Vect}_{\mathbb{C}}, \otimes)$:

$$(Z_1\otimes Z_2)(X^d)=Z_1(X)\otimes Z_2(X)$$

Definition (Invertible field theory)

A functorial field theory $Z : \text{Bord}_{\langle d,d+1 \rangle}^{nc_1^2-\text{String}} \to s\text{Vect}_{\mathbb{C}}$ is said to be *invertible* if it is tensor-invertible under the above tensor product.

Invertible field theories (IFTs) factor through the maximal Picard groupoid ¹ of the target $sLine_{\mathbb{C}} \subset sVect_{\mathbb{C}}$

$$(\operatorname{Bord}_{\langle d,d+1\rangle}^{nc_1^2\operatorname{-twisted}},\sqcup) \xrightarrow{Z} (\operatorname{sVect}_{\mathbb{C}},\otimes) \xrightarrow{\uparrow} (\operatorname{sLine}_{\mathbb{C}},\otimes)$$

¹A Picard groupoid is a fully invertible symmetric monoidal category

Invertible field theories (IFTs) factor through the groupoid completion of the source.

IFTs and bordism

MString $\wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

IFTs and stable homotopy theory

Classifying invertible field theories

IFTs are classified by maps of spectra.

bordism	character
spectrum	\longrightarrow dual of the
	sphere

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

IFTs and stable homotopy theory

Classifying invertible field theories

IFTs are classified by maps of spectra.

$$MString \wedge BU(1)^{-nT} \longrightarrow I\mathbb{C}^{\times}$$

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

IFTs and stable homotopy theory

Classifying invertible field theories

IFTs are classified by maps of spectra.

MString $\land BU(1)^{-nT} \longrightarrow I \mathbb{C}^{\times}$

Classification theorems: Freed-Hopkins, Freed-Hopkins-Teleman, Grady (deformation classes)

IFTs and bordism

MString $\land BU(1)^{-r}$

A bordism invariant

Manifold generators

Our mathematical setup

Summary of the physics \rightsquigarrow topology conversion

• When we study anomaly cancellation of a *d*-dimensional theory, we:

Manifold generators

Our mathematical setup

Summary of the physics \rightsquigarrow topology conversion

- When we study anomaly cancellation of a *d*-dimensional theory, we:
 - () Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$

Manifold generators

Our mathematical setup

Summary of the physics \rightsquigarrow topology conversion

- When we study anomaly cancellation of a *d*-dimensional theory, we:
 - () Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$
 - Represent the total anomaly by (d + 1)-dimensional IFT in terms of X_{d-2} with the twisted tangential structure determined by X₄

Manifold generators

Our mathematical setup

Summary of the physics \rightsquigarrow topology conversion

- When we study anomaly cancellation of a *d*-dimensional theory, we:
 - () Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$
 - Represent the total anomaly by (d + 1)-dimensional IFT in terms of X_{d-2} with the twisted tangential structure determined by X₄
 - IFTs are determined by the map they define out of a bordism group of manifolds with X₄ structure

Our mathematical setup

Anomalies in QFT

Summary of the physics \rightsquigarrow topology conversion

IFTs and bordism

0000

- When we study anomaly cancellation of a *d*-dimensional theory, we:
 - () Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$
 - Represent the total anomaly by (d + 1)-dimensional IFT in terms of X_{d-2} with the twisted tangential structure determined by X₄
 - IFTs are determined by the map they define out of a bordism group of manifolds with X₄ structure
- Goal: prove anomaly cancellation in 6d supergravity with U(1) gauge group

- When we study anomaly cancellation of a *d*-dimensional theory, we:
 - () Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$
 - Represent the total anomaly by (d + 1)-dimensional IFT in terms of X_{d-2} with the twisted tangential structure determined by X₄
 - IFTs are determined by the map they define out of a bordism group of manifolds with X₄ structure
- Goal: prove anomaly cancellation in 6d supergravity with U(1) gauge group
 - Compute 7-dimensional twisted string bordism groups. They are nonzero!

- When we study anomaly cancellation of a *d*-dimensional theory, we:
 - () Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$
 - Represent the total anomaly by (d + 1)-dimensional IFT in terms of X_{d-2} with the twisted tangential structure determined by X₄
 - IFTs are determined by the map they define out of a bordism group of manifolds with X₄ structure
- Goal: prove anomaly cancellation in 6d supergravity with U(1) gauge group
 - Compute 7-dimensional twisted string bordism groups. They are nonzero!
 - (a) Construct 7-dimensional manifold generators to compute $\alpha_{\rm anom}$ on

IFTs and bordisn

 $MString \wedge BU(1)^{-nT}$

A bordism invariant

Manifold generators

Twists of BU(1)-string bordism in dimension 7

 Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3. Anomalies in QFT IFTs and bordism MString $\wedge BU(1)^{-nT}$ A bordism invariant Manifold generators $\circ \circ \circ \circ \circ$ Occords Occord

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3.
- Few useful comparison maps, $\Omega_7^{\text{Spin}} \cong \Omega_7^{\text{String}} \cong 0$

Challenges computing $\Omega_7^{\mathsf{String}-\mathit{nc}_1^2}$

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3.
- Few useful comparison maps, Ω₇^{Spin} ≅ Ω₇^{String} ≅ 0 and comparison maps changing the dimension land in high dimensional or 0 groups.

Anomalies in QFT IFTs and bordism $MString \wedge BU(1)^{-nT}$

A bordism invariant

Manifold generators

Challenges computing $\Omega_7^{\mathsf{String}-\mathit{nc}_1^2}$

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3.
- Few useful comparison maps, Ω₇^{Spin} ≅ Ω₇^{String} ≅ 0 and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some −nT twists but we want something that works for all −nT twists.

IFTs and bordism

 $MString \wedge BU(1)^{-nT}$

A bordism invariant

Manifold generators

Challenges computing $\Omega_7^{\text{String}-nc_1^2}$

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2,3.
- Few useful comparison maps, Ω₇^{Spin} ≅ Ω₇^{String} ≅ 0 and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some −nT twists but we want something that works for all −nT twists.
- Generators?

Anomalies in QFT

• $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,

Ts and bordism

 $MString \wedge BU(1)^{-nT}$

A bordism invariant

Manifold generators

Challenges computing $\Omega_7^{\mathsf{String}-\mathit{nc}_1^2}$

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3.
- Few useful comparison maps, Ω₇^{Spin} ≅ Ω₇^{String} ≅ 0 and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some −nT twists but we want something that works for all −nT twists.
- Generators?

Anomalies in QFT

- $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,
- odd dimension means no hope for complex algebraic representatives.

Ts and bordism

 $MString \wedge BU(1)^{-nT}$

A bordism invariant

Manifold generators

Challenges computing $\Omega_7^{\mathsf{String}-\mathit{nc}_1^2}$

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3.
- Few useful comparison maps, Ω₇^{Spin} ≅ Ω₇^{String} ≅ 0 and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some −nT twists but we want something that works for all −nT twists.
- Generators?

Anomalies in QFT

- $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,
- odd dimension means no hope for complex algebraic representatives.
- Lens spaces? Can determine twisted string structure, but hard to detect if generators.

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3.
- Few useful comparison maps, Ω₇^{Spin} ≅ Ω₇^{String} ≅ 0 and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some −nT twists but we want something that works for all −nT twists.
- Generators?
 - $K3 imes S^3$, $\mathbb{CP}^2 imes S^3$ are not twisted string,
 - odd dimension means no hope for complex algebraic representatives.
 - Lens spaces? Can determine twisted string strucutre, but hard to detect if generators.

IFTs and bordism 00000 $\underset{0 \leq 0 \leq 0}{\text{MString}} \wedge BU(1)^{-nT}$

A bordism invariant

Manifold generators

Solutions: characterize homotopically inequivalent twists

How many homotopically inequivalent MString $\wedge BU(1)^{-nT}$ are there?

(4日) (四) (三) (三) (三) (三) (三) (三)

Solutions: characterize homotopically inequivalent twists

How many homotopically inequivalent MString $\wedge BU(1)^{-nT}$ are there?

Theorem (Basile-Krulewski-Leone-P.-T.)

The homotopy class of $MString \wedge BU(1)^{-nT}$ only depends on the value of $n \pmod{12}$.

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3.
- Few useful comparison maps, Ω₇^{Spin} ≅ Ω₇^{String} ≅ 0 and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some −nT twists but we want something that works for all −nT twists.
- Generators?
 - $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,
 - odd dimension means no hope for complex algebraic representatives.
 - Lens spaces? Can determine twisted string strucutre, but hard to detect if generators.

IFTs and bordism

 $\underset{00000}{\text{MString}} \land BU(1)^{-nT}$

A bordism invariant

Manifold generators

Solutions: bordism invariants

Theorem (Basile–Krulewski–Leone–P.-T.)

Given a (BU(1), -nT)-twisted string 7-manifold M, there exists a spin 8-manifold N with $\tilde{f} : N \to BU(1)$ and $\partial N = M$, then the map

$$\lambda_8^E : \Omega_8^{Spin}(BU(1)) \to \mathbb{Z}$$

 $N \mapsto \int_N \hat{A}(TN)ch(E - \operatorname{rk} E)$

descends to an invariant

С

$$\alpha_7^{\mathsf{E}}(\mathsf{M}) := \alpha_8^{\mathsf{E}}(\mathsf{N}) : \Omega_7^{\mathsf{String}}(\mathsf{BU}(1)^{-n\mathsf{T}}) \to \mathbb{Q}/\mathbb{Z}$$

precisely when $ch_4(E) = nx^2 ch_2(E)$.

Theorem-in-progress (Basile-Krulewski-Leone-P.-T.)

All bordism invariants $\Omega_7^{String}(BU(1)^{-nT}) \to \mathbb{Q}/\mathbb{Z}$ arise in this way.

- Adams spectral sequence: trivial at p ≥ 5, extension problems at p = 2, 3.
- Few useful comparison maps, Ω₇^{Spin} ≅ Ω₇^{String} ≅ 0 and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some −nT twists but we want something that works for all −nT twists.
- Generators?
 - $K3 imes S^3$, $\mathbb{CP}^2 imes S^3$ are not twisted string,
 - odd dimension means no hope for complex algebraic representatives.
 - Lens spaces? Can determine twisted string strucutre, but hard to detect if generators.

Solutions: manifold generators from sphere bundles

Instead of $\mathbb{CP}^2 \times S^3$, we consider "twisted products" $\mathbb{CP}^2 \times S^3$, namely sphere bundles S(V) of rank 4 real vector bundles $V \to \mathbb{CP}^2$.

Solutions: manifold generators from sphere bundles

- Instead of $\mathbb{CP}^2 \times S^3$, we consider "twisted products" $\mathbb{CP}^2 \times S^3$, namely sphere bundles S(V) of rank 4 real vector bundles $V \to \mathbb{CP}^2$.
 - They naturally come equipped with a map to BU(1): $S(V) \rightarrow \mathbb{CP}^2 \rightarrow BU(1).$

Solutions: manifold generators from sphere bundles

Instead of $\mathbb{CP}^2 \times S^3$, we consider "twisted products" $\mathbb{CP}^2 \times S^3$, namely sphere bundles S(V) of rank 4 real vector bundles $V \to \mathbb{CP}^2$.

- They naturally come equipped with a map to BU(1): $S(V) \rightarrow \mathbb{CP}^2 \rightarrow BU(1).$
- They naturally come equipped with a bulk manifold: $S(V) = \partial D(V).$

IFTs and bordism 00000 $\underset{00000}{\text{MString}} \land BU(1)^{-nT}$

A bordism invariant

Manifold generators

Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1, \chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

・ロト・日本・日本・日本・日本・日本
Manifold generators

Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1,\chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

Proof sketch.

•
$$[\mathbb{CP}^2, BU(2)] \xrightarrow{(c_1, c_2)} \mathbb{Z} \times \mathbb{Z}$$

Manifold generators

Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1, \chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

Proof sketch.

•
$$[\mathbb{CP}^2, BU(2)] \xrightarrow{(c_1, c_2)} \mathbb{Z} \times \mathbb{Z}$$

• Things in the image of $[\mathbb{CP}^2, BSU(2)] \to [\mathbb{CP}^2, BSO(4)]$ satisfy this property

Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1, \chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

Proof sketch.

•
$$[\mathbb{CP}^2, BU(2)] \xrightarrow{(c_1, c_2)} \mathbb{Z} \times \mathbb{Z}$$

- Things in the image of $[\mathbb{CP}^2, BSU(2)] \to [\mathbb{CP}^2, BSO(4)]$ satisfy this property
- $[S^4, BSO(4)]$ acts on $[\mathbb{CP}^2, BSO(4)]$ and acting by TS^4 sends $(p, e) \rightsquigarrow (p, e+2)$

Solutions: manifold generators from sphere bundles

Theorem (Basile-Krulewski-Leone-P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1, \chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

Proof sketch.

•
$$[\mathbb{CP}^2, BU(2)] \xrightarrow{(c_1, c_2)} \mathbb{Z} \times \mathbb{Z}$$

- Things in the image of $[\mathbb{CP}^2, BSU(2)] \to [\mathbb{CP}^2, BSO(4)]$ satisfy this property
- $[S^4, BSO(4)]$ acts on $[\mathbb{CP}^2, BSO(4)]$ and acting by TS^4 sends $(p, e) \rightsquigarrow (p, e+2)$
- Use the fibration $S^4 \rightarrow BSO(4) \rightarrow BSO(5)$ to show TS^4 acts transitively on the set of bundles with a given p_1

Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1, \chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

Theorem (Basile–Krulewski–Leone–P.-T.)

S(V) equipped with $f : S(V) \xrightarrow{\pi} \mathbb{CP}^2 \subset BU(1)$ is nc_1^2 -twisted string exactly when $p_1(V) + 3 + 2n \equiv 0 \pmod{2\chi(V)}$ in which case

$$\alpha_7^E(S(V)) = \frac{ch_2(E)(p_1(V) + 3 + 2n)}{48e(V)}$$

IFTs and bordism

MString $\wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

An illustrative example: a bordism invariant for n = 1

FTs and bordisn

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

A useful cofiber sequence

MString $\rightarrow M$ Spin $\rightarrow M$ Spin/MString $\rightarrow \Sigma M$ String

FTs and bordisn

MString $\land BU(1)^{-n}$

A bordism invariant

Manifold generators

A useful cofiber sequence

$(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$

FTs and bordisn

 $MString \land BU(1)^{-n}$

A bordism invariant 00000000

Manifold generators

A useful cofiber sequence

 $(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$

• MString $\land BU(1)^{-T}$: $(M, f : M \to BU(1), \phi)$, M spin and ϕ a string structure on $TM - f^*T$

FTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

A useful cofiber sequence

 $(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$

- $MString \wedge BU(1)^{-T}$: $(M, f : M \to BU(1), \phi)$, M spin and ϕ a string structure on $TM - f^*T$
- MSpin $\land BU(1)^{-T}$: $(N, g : N \rightarrow BU(1), \psi)$, N oriented and ψ a spin structure on $TN f^*nT$

FTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

A useful cofiber sequence

 $(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$

- MString $\land BU(1)^{-T}$: $(M, f : M \to BU(1), \phi)$, M spin and ϕ a string structure on $TM - f^*T$
- MSpin $\land BU(1)^{-T}$: spin manifolds N with a map to $BU(1)^{-1}$

 ^{1}M Spin $\wedge BU(1)^{-T} \cong M$ Spin $\wedge BU(1)_{+}$

IFTs and bordism 00000 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

A useful cofiber sequence

 $(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$

- MString ∧ BU(1)^{-T}: (M, f : M → BU(1), φ), M spin and φ a string structure on TM − f*T
- $MSpin \wedge BU(1)^{-T}$: spin manifolds N with a map to $BU(1)^{-1}$
- MSpin/MString $\land BU(1)^{-T}$: $(N, M, f : N \to BU(1), \phi)$, N is spin, $M = \partial N$, and ϕ is a string structure on $TM f|_{\partial N}^* T$

 ^{1}M Spin $\wedge BU(1)^{-T} \cong M$ Spin $\wedge BU(1)_{+}$

IFTs and bordism 00000 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Overview of the construction

We wish to construct morphisms

$$\alpha_8: \pi_8 M \mathrm{Spin} \wedge BU(1)^{-T} \to \mathbb{Z}$$

that descend along the diagram

・ロト・日本・日本・日本・日本・日本

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

8d integer invariant

For $(N, f) \in \pi_8 M$ Spin $\land BU(1)_+$, consider the "index of the twisted Dirac operator"

$$lpha_8^{\mathcal{O}(1)}(\mathsf{N},f) = \hat{\mathsf{A}}(\mathsf{TN})\mathsf{ch}(f^*\mathcal{O}(1) - 1_\mathbb{C})[\mathsf{N}]$$

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

8d integer invariant

For $(N, f) \in \pi_8 M$ Spin $\land BU(1)_+$, consider the "index of the twisted Dirac operator"

$$\alpha_8^{\mathcal{O}(1)}(N,f) = \hat{A}(TN) \underbrace{\operatorname{ch}(f^*\mathcal{O}(1) - 1_{\mathbb{C}})}_{\mathbb{C}}[N]$$

could twist by any E

For $(N, f) \in \pi_8 M$ Spin $\land BU(1)_+$, consider the "index of the twisted Dirac operator"

$$lpha_8^{\mathcal{O}(1)}(\mathsf{N},f)=\hat{\mathsf{A}}(\mathsf{TN})\mathsf{ch}(f^*\mathcal{O}(1)-1_\mathbb{C})[\mathsf{N}]$$

By APS, this is a K-theory pushforward²

$$egin{aligned} & [\mathcal{O}(1)-1_{\mathbb{C}}]\in & \mathsf{KU}(\mathsf{BU}(1)) \stackrel{f^*}{\longrightarrow} & \mathsf{KU}(\mathsf{N}) \stackrel{i_!}{\longrightarrow} & \mathsf{KU}(\mathsf{pt})\cong \mathbb{Z} \ & & \hat{A}(\mathsf{N})\mathrm{ch}\downarrow & & \downarrow \ & & \mathsf{H}(\mathsf{N};\mathbb{Q}) \stackrel{\int_{\mathsf{N}}}{\longrightarrow} & \mathsf{H}(\mathsf{pt};\mathbb{Q})\cong \mathbb{Q} \end{aligned}$$

²Can also define as a *KO* pushforward

For $(N, f) \in \pi_8 M$ Spin $\land BU(1)_+$, consider the "index of the twisted Dirac operator"

$$lpha_8^{\mathcal{O}(1)}(\mathsf{N},f) = \hat{\mathsf{A}}(\mathsf{TN})\mathsf{ch}(f^*\mathcal{O}(1) - 1_\mathbb{C})[\mathsf{N}]$$

By APS, this is a K-theory pushforward²

$$egin{aligned} & [\mathcal{O}(1)-1_{\mathbb{C}}]\in & \mathsf{KU}(\mathsf{BU}(1)) \xrightarrow{f^*} & \mathsf{KU}(\mathsf{N}) \xrightarrow{i_!} & \mathsf{KU}(\mathsf{pt})\cong \mathbb{Z} \ & & \hat{A}(\mathsf{N})\mathrm{ch} \downarrow & & \downarrow \ & & \mathsf{H}(\mathsf{N};\mathbb{Q}) \xrightarrow{\int_{\mathsf{N}}} & \mathsf{H}(\mathsf{pt};\mathbb{Q})\cong \mathbb{Q} \end{aligned}$$

So it defines an integer-valued map

$$\alpha_8^{\mathcal{O}(1)}: \pi_8 M {
m Spin} \wedge BU(1)^{-nT}
ightarrow \mathbb{Z}$$

²Can also define as a *KO* pushforward

Anomalies in QFT 00000000000	IFTs and bordism	$\frac{M}{N} String \wedge BU(1)^{-nT}$	A bordism invariant 0000●0000	Manifold generators

Claim

 $\alpha_8^{\mathcal{O}(1)}$ can take on any integer value.

Anomalies in QFT	IFTs and bordism	$\underset{00000}{MString} \land BU(1)^{-nT}$	A bordism invariant 0000●0000	Manifold generators
8d integer i	nvariant			

Claim

 $\alpha_8^{\mathcal{O}(1)}$ can take on any integer value.

Proof. Consider a degree 4 hypersurface $N \subset \mathbb{CP}^5$, it naturally comes equipped with $f : N \subset \mathbb{CP}^5 \to \mathbb{CP}^\infty$.

Anomalies in QFT	IFTs and bordism 00000	$\underset{0}{\overset{MString}{\wedge}BU(1)}{\overset{-nT}{}}$	A bordism invariant	Manifold generators

Claim

 $\alpha_8^{\mathcal{O}(1)}$ can take on any integer value.

Proof. Consider a degree 4 hypersurface $N \subset \mathbb{CP}^5$, it naturally comes equipped with $f : N \subset \mathbb{CP}^5 \to \mathbb{CP}^\infty$. We have $TN + \mathcal{O}(1) = 6\mathcal{O}(1) - \mathcal{O}(4)$, so

$$p_1(TN) = (6-16)x^2 = -10x^2$$

Anomalies in QFT	IFTs and bordism	$\frac{M \text{String} \land BU(1)^{-nT}}{00000}$	A bordism invariant	Manifold generator

Claim

 $\alpha_8^{\mathcal{O}(1)}$ can take on any integer value.

Proof. Consider a degree 4 hypersurface $N \subset \mathbb{CP}^5$, it naturally comes equipped with $f : N \subset \mathbb{CP}^5 \to \mathbb{CP}^\infty$. We have $TN + \mathcal{O}(1) = 6\mathcal{O}(1) - \mathcal{O}(4)$, so

$$p_1(TN) = (6 - 16)x^2 = -10x^2$$

It follows that

$$\alpha_8^{\mathcal{O}(1)}(N,f) = \int_N 10x^4/48 + x^4/24 = \int_N 12x^4/48$$
$$= \int_{\mathbb{P}^5} 4(12h^4/48) = 1$$

FTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

8d integer invariant

The invariant can be written as

$$\alpha_8^{\mathcal{O}(1)}(N, f) = \hat{A}(TN) \operatorname{ch}(f^*\mathcal{O}(1) - 1_{\mathbb{C}})[N]$$
$$= -\int_N (p_1(TN) - 2x^2)x^2/48$$
$$= -\int_N p_1(TN - f^*T)x^2/48$$

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Extending to the relative groups

Take $(N, M, f, \phi) \in \pi_8 M \text{Spin} / M \text{String} \wedge BU(1)^{-T}$,

IFTs and bordism

MString $\land BU(1)^{-r}$

A bordism invariant

Manifold generators

Extending to the relative groups

Take $(N, M, f, \phi) \in \pi_8 M \text{Spin} / M \text{String} \wedge BU(1)^{-T}$,

• BString is 7-connected, so we may choose a trivialization $\widetilde{\phi}$ of $TM-f|_{\partial N}^*T$

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Extending to the relative groups

Take $(N, M, f, \phi) \in \pi_8 M \text{Spin} / M \text{String} \wedge BU(1)^{-T}$,

- BString is 7-connected, so we may choose a trivialization ϕ of $TM f|_{\partial N}^* T$
- This defines a relative KO class [TN − f*T]_{φ̃} ∈ KO(N, M) and a relative class p₁([TN − f*T]_{φ̃}) ∈ H⁴(N, M)

A bordism invariant

Manifold generators

Extending to the relative groups

Take $(N, M, f, \phi) \in \pi_8 M \text{Spin} / M \text{String} \wedge BU(1)^{-T}$,

- BString is 7-connected, so we may choose a trivialization ϕ of $TM f|_{\partial N}^* T$
- This defines a relative KO class $[TN f^*T]_{\widetilde{\phi}} \in KO(N, M)$ and a relative class $p_1([TN - f^*T]_{\widetilde{\phi}}) \in H^4(N, M)$
- Define $\alpha_{rel}^{O(1)} = -p_1([TN f^*nT]_{\widetilde{\phi}})c_1(\mathcal{L})^2[N]$ using Poincare-Lefschetz duality

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Extending to the relative groups

$\pi_{8}M\mathrm{Spin} \wedge BU(1)_{+} \longrightarrow \pi_{8}M\mathrm{Spin}/M\mathrm{String} \wedge BU(1)^{-\tau}$ $\downarrow^{\alpha_{8}^{\mathcal{O}(1)}} \qquad \qquad \qquad \downarrow^{\alpha_{\mathrm{rel}}^{\mathcal{O}(1)}}$ $\mathbb{Z} \longleftarrow \mathbb{Q}$

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Descending to a 7d invariant

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Descending to a 7d invariant

• $\phi: M \xrightarrow{TM-f^*T} B$ String lifts to a framing of $TM - f^*T$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Descending to a 7d invariant

- $\phi: M \xrightarrow{TM-f^*T} B$ String lifts to a framing of $TM f^*T$
- $\pi_7(M\text{Spin} \land BU(1)_+) \simeq 0$ so there exists a pair (N^8, \tilde{f}) with $(M, f) = \partial(N, \tilde{f})$

IFTs and bordism 00000 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Descending to a 7d invariant

• $\phi: M \xrightarrow{TM-f^*T} B$ String lifts to a framing of $TM - f^*T$

- $\pi_7(M \text{Spin} \land BU(1)_+) \simeq 0$ so there exists a pair (N^8, \tilde{f}) with $(M, f) = \partial(N, \tilde{f})$
- Set $\alpha_7^{\mathcal{O}(1)}(M, f, \phi) := \alpha_{\mathsf{rel}}^{\mathcal{O}(1)}(N, M)$

Index of Dirac operator twisted by $\mathcal{O}(1) - 1_{\mathbb{C}}$ is a *K*-theory pushforward.

It factors a $p_1([TN - f^*T])$ so it extends to a relative invariant.

Any twisted string 7-manifold is on the boundary of a spin 8-manifold so this descends to a 7d invariant.

General case: need to choose E to twist Dirac operator by that both descends and detects the most torsion.
IFTs and bordisn

MString $\land BU(1)^{-n}$

A bordism invariant

 $\underset{\bullet \circ \circ \circ \circ \circ}{\text{Manifold generators}}$

Manifold generators

IFTs and bordism

MString $\land BU(1)^{-n}$

A bordism invariant

Manifold generators

Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi}), {p \choose 2} \equiv \chi \pmod{2}$

IFTs and bordism

 $MString \land BU(1)^{-n}$

A bordism invariant

Manifold generators

Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle
$$V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$$
 with $p = p_1(V_{p,\chi})$,
 $\chi = e(V_{p,\chi}), \binom{p}{2} \equiv \chi \pmod{2}$

• When is $D(V_{p,\chi})$ spin?

Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi}), \binom{p}{2} \equiv \chi \pmod{2}$

 When is D(V_{p,χ}) spin? Exactly when p is odd, in which case it has a unique spin structure. Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi}), \binom{p}{2} \equiv \chi \pmod{2}$

- When is $D(V_{p,\chi})$ spin? Exactly when p is odd, in which case it has a unique spin structure.
- When does S(V_{p,χ}) admit a (BU(1), -T)-twisted string structure?

Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi}), \binom{p}{2} \equiv \chi \pmod{2}$

- When is $D(V_{p,\chi})$ spin? Exactly when p is odd, in which case it has a unique spin structure.
- When does S(V_{p,χ}) admit a (BU(1), -T)-twisted string structure?

 $KO(D(V), S(V)) \rightarrow \widetilde{KO}(D(V)) \ni [TD(V) - f^*T]$

IFTs and bordism

MString $\land BU(1)^{-n}$

A bordism invariant

Manifold generators

Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi}), \binom{p}{2} \equiv \chi \pmod{2}$

- When is $D(V_{p,\chi})$ spin? Exactly when p is odd, in which case it has a unique spin structure.
- When does S(V_{p,χ}) admit a (BU(1), -T)-twisted string structure?

 $KO(D(V), S(V)) \rightarrow \widetilde{KO}(D(V)) \ni [TD(V) - f^*T]$

 $[TD(V) - f^*T] = [V + 3O(1) - (O(1) + O(-1))]$

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Sphere bundle generators

$lpha_7^{\mathcal{O}(1)}$ on $-\mathcal{T}$ -twisted sphere bundles

Theorem (Basile-Krulewski-Leone-P.-T.)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi}), \chi = e(V_{p,\chi}), S(V_{p,\chi})$ admits a (BU(1), -T)-twisted string structure exactly when

$$p+1\equiv 0\pmod{2\chi}$$

in which case

$$\alpha_7(S(V_{p,\chi})) = -\frac{p+1}{48\chi}$$

・ロト ・母 ト ・ヨト ・ヨー うんの

IFTs and bordism

 $MString \wedge BU(1)^{-n}$

A bordism invariant

Manifold generators

Sphere bundle generators

α_7^E on -nT-twisted sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi}), \chi = e(V_{p,\chi}), S(V_{p,\chi})$ admits a (BU(1), -T)-twisted string structure exactly when

$$p+3-2n\equiv 0\pmod{2\chi}$$

in which case

$$\alpha_7^E = -\frac{ch_2(E)(p+3-2n)}{48\chi}$$

IFTs and bordism

MString $\land BU(1)^{-n}$

A bordism invariant

Manifold generators ○00●○

Sphere bundle generators

Order of the n = 1 bordism group

• $p = 3, \chi = 1$ satisfies $\binom{3}{2} \equiv 1 \pmod{2}, 3 + 1 \equiv 0 \mod 2$ and $\alpha_7^{\mathcal{O}(1)}(S(V_{3,1})) = -\frac{1}{12}$

- * ロ > * 個 > * 目 > * 目 > * 目 * の < の

|--|

Thank you!